August 28, 2002

MEMORANDUM

To: William Maxwell, EPA/OAQPS/ESD/CG

From: Jeffrey Cole, RTI

Subject: Satidticd Analyss of Mercury Test Data Variability in Support of a Determination of
the MACT Hoor for the Regulation of Mercury Air Emissons from Cod-Fired Electric
Utility Plants

Background

In 1999, the U.S. Environmental Protection Agency (EPA) conducted the Electric Utility Steam
Generating Unit Mercury Emissons Information Collection Effort (EU/ICE) to gether information about
mercury emissons from the cod-fired dectric utility industry. This effort led to the collection of stack
test reports on 80 furnace/boiler units. The EPA is currently using the results of these tests to determine
the maximum achievable control technology (MACT) floor for the regulation of mercury emissons.

The EPA is now seeking to quantify the uncertainty component that should be added to the mean
values of the best 12 percent of the units chosen for MACT floor.

Objective

The objective of this andyssisto evduate the variahility in the determination of the average
performance of the best 12 percent of 80 units that were tested under the 1999 EU/ICE (Scenario 1).
After this RTI will apply the gatistical method used in Scenario 1 to the best unitsin two
subcategorization scenarios. Scenario 2 - subcategorization by cod type with fluidized-bed combustors
(FBC) included, and Scenario 3 - subcategorization by cod type without FBC. Note: thisisonly one
method of addressing the variability or uncertainty associated with emisson performance testing.

Future memoranda may discuss other possible methods.



PROCEDURE

Basisfor MACT Hoor (Scenario 1)

In the determination of the MACT floor for the existing cod-fired power plant units, RTI used
the results of the emissons tests for a set of 80 power plant units (Scenario 1). The air emissions of
mercury (Ib Hg/trillion Btu, derived using F-factors) were evauated for each of the 80 tests, and the
best 10 units (i.e., top 12 percent of 80 units) were identified. The best ten units are identified in Table
1, together with their average (mean) air emissons of mercury.

Types of Uncertainty

In Scenario 1, the top 12 percent of the data are the best units. When we identify the top units
in MACT floor andysis, the average of those best 12 percent of the unitsisthe first estimate of the
MACT floor. InTable 1, this average mercury emisson rateis 0.175 |b Hg/TBtu. Thisaverage
number has two dements of uncertainty associated with the vaue of the number. One uncertainty isthe
actua vaue of the long-term average of the best units, since there are only afew tests available that
represent the best 12 percent of the units and there is measurement uncertainty associated with each
test set of 3* measurements.,

The second uncertainty is the variability of emissons for these best units under the worst
foreseeable circumstances under norma operating conditions. This second uncertainty includes
operationa variability. Thereisno direct measurement of operationd variability, athough there was
some operationd variability included in the measurement uncertainty associated with each test set of
three measurements.

Evauating Uncertanty

RTI was required to identify and use a method to demonsirate a reasonabl e characterization of
the top 12 percent of sources that the Act defines as the basis of the MACT floor. One key
component of this methodology is the use of conventiona Statistica andysis of the two uncertainties that
are identified here.

RTI has used a gatistica mode to evauate the uncertainty in the data base and two
components of the uncertainty have been evaluated:

1. the uncertainty due to measurement error (includes very limited operationd variability), and
2. the uncertainty due to the evauation of the air emissons at different locations.

@Three of the 80 units had only 2 usable data points because of apparent errorsin transporting samplesor in
laboratory sample analysis. However none, of these 3 unitsarein the Scenario 1, top 12 percent (top 10 units).
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The uncertainty due to measurement error (component 1 above) is presented in Table A-1 for each of
the 10 best tests.



Tablel. Mercury Test Unit Emission Meansfor Top 10 Performing Plants (Scenario 1, Top
12 percent of 80 Units Tested) *

ICR plant mercury
Rank Test unit Coal Controls emissions (Ib/TBtu, based
on F-factor)

1 Kline Waste Bituminous FF 0.0816
2 Scrubgrass Waste Bituminous FF 0.0936
3 Mecklenburg Bituminous SDA/FF 0.1062
4 g‘évgg:eergt?g:]esgﬁtlj Bituminous SDAFF 0.1074
5 Valmont Bituminous FF 0.1268
6 Stockton Bituminous - PetCoke FF 0.1316
7 SEI - Birchwood Bituminous SDA/FF 0.2379
8 Intermountain Bituminous FF/IFGD 0.2466
9 Logan Bituminous SDA/FF 0.2801
10 Salem Bituminous ESP-CS 0.3348

Average 0.175

* Three of the 80 units had only 2 usable data points because of apparent errorsin transporting samplesor in
laboratory sample analysis. However, none of these 3 units are in the top 12 percent (top 10 units). Two of the 80
stack tests were done on the same unit at different times (Gibson Generating Station).

FF = Baghouse (fabric filter)

SDA = Dry lime/spray dryer adsorber

FGD = A flue gas desulfurization wet scrubber (lime or limestone)

ESP-CS = Electrostatic precipitator (cold-side, meaning this ESP isinstalled at alocation downstream of the air
preheater)

Edtimating Measurement Uncertainty

When only afew test sets are available in the entire data pool for the evauation of the
performance of the best 12 percent of the units due to industry subcategorization or other factors, it is
not possible to evauate the uncertainty accurately using only the smaler data pool. Asit gppears that
the measurement uncertainty is afunction of the mercury level and the entire data set exhibits awide
variation in mercury levels, the entire data set rather than only 12 percent of the data base will provide a
more reasonable estimate of the measurement uncertainty of the best 12 percent of the units.
Consderation of alarger data base tends to reduce the statistical uncertainty. Equation 1 describesthe



datistical modd that was obtained to characterize the measurement uncertainty for any test set of three
measurements:

Eqution (1) 6 = /- 0.00066 + 0.0235x 1902

where F isthe standard deviation of anormal distribution that describes the uncertainty that is
associated with the measurement error, and X is the average of the mercury air emissons that were
measured in the three tests.

The varigbility of emissons for these best units under the worst foreseeable circumstances
(component 2 above) is estimated by an analyss of the entire data set. The uncertainty isfound for al
data, then is added as a portion of the uncertainty for the best 12 percent of units. The combined
uncertainty components (measurement error and long-term operation) are added to the averages
(means) of the best 12 percent and used to establish upper vaues for the 90 percent, 95 percent, and
99 percent confidence limits for the digtribution of the best 12 percent of units.

Edimating Operationa Uncertainty

Inthis gatistical analysis, it is assumed that the long-term performance of the MACT unit will be
better than or equa to the performance of the average of the best 12 percent of the tested 80 units that
the Act defines as the basis of the MACT floor, and confidence limits due to unit performance
variability will be added to this average through conventiona atistica techniques. The operationd
uncertainty for the same plant operating at the average performance of the best unitsis assumed to be
less than the unit-to-unit uncertainty of the entire set of best units. If the emissons of aunit are
measured at a vaue greater than the upper 95 percent vaue, then there islessthan 5 percent
confidence that the unit is achieving the performance of the MACT unit. Application of the two
uncertainty components to subcategorization scenarios are described below.

Resultsfor Scenario 1

In the first scenario, RT1 andyzed the MACT floor for al the existing cod fired power plant
units (no subcategorization). In thisanayss, the results from al EU/ICE emissions tests (80 emissons
test reports) were used. Two of the 80 stack tests were done on the same unit at different times
(Gibson Generating Station). The air emissons of mercury (Ib Hg/trillion Btu, derived usng F-factors)
are evauated for each of the 80 tests, and the best 10 units are identified. The best 10 units (top 12
percent) are identified in Table 1, together with their average (mean) air emissions of mercury.

The estimates of the upper limits for the average vaue of the performance of the top 10 units
(upper 12 percent of 80 tests) are listed in Table 2. The vaues of these emission limits are based upon
an average of 0.175 Ib Hg/TBtu. Because of the measurement uncertainty in the average of the



emisson factors, these upper limits are somewhat greater than the average vaue, and depend on the
confidence limit.
Resultsfor Scenario2 and 3

RTI then gpplied the same emissons variability methodology to two subcategorization
scenarios. Scenario 2 - subcategorization by cod type with FBC included; and Scenario 3 -
subcategorization by cod type without FBC.

In the second scenario, the MACT floors for the existing coa-fired power plant units
subcategorized by fue type, RTI used the results of the emissionstests for aset of 78 power plant units
(34 bituminous-fired, 32 subbituminous-fired, and 12 lignite-fired). The two waste fud-fired units are
not included in this scenario. The air emissons of mercury (Ib Hg/TBtu, derived using Ffactors) are
evaluated for each of the 34, 32, or 12 tedts, respectively, and the average of the best unitsin each
subcategory isidentified. Thisaveraging is donein one of two ways. |If there are 30 or more unitsin
the industry that match the subcategory, the average of the top 12 percent of the data sets available are
used. If thereare 29 or fewer unitsin the industry that match the subcategory, the average of thetop 5
sets of available datais used. There are wel over 30 bituminous- and subbituminous-fired unitsin the
electric utility industry (1999), respectively. Thus, the bituminous (34 x 0.12 = 4.08 or 4 sets) and the
subbituminous (32 x 0.12 = 3.84 or 4 sats) subcategories are based on 4 sets of 3 data points each.
There are only 29 lignite-fired unitsin the dectric utility industry (1999); therefore, the lignite
subcategory is based on 5 sets of 3 data points (except Leland Olds with 2 data points, 14 data points
total).

When the top 12 percent of the unitsin MACT floor andysis are identified (by subcategory),
the average of the best 12 percent of the unitsisthe first estimate of the MACT floor. In Table 3, the
average mercury emission rates for bituminous-, subbituminous-, and lignite-fired (with FBCs) are
0.118, 0.764, 5.032 Ib Hg/TBtu, respectively.

In the third scenario, the MACT floors for the existing cod-fired power plant units
subcategorized by fue type (without FBCs), the results of the emissons tests for a set of 74 power
plant units (33 bituminous-fired, 31 subbituminous-fired, and 10 lignite-fired) were used. Theair
emissions of mercury (Ib Hg/TBtu, derived usng F-factors) are evauated for each of the 33, 31, or
10 tests, respectively, and the average of the best unitsin each subcategory isidentified. Thisaveraging
is done one of two ways. If there are 30 or more units in the industry that match the subcategory, the
average of the top 12 percent of the data sets available are used. If there are 29 or fewer unitsin the
industry that match the subcategory, the average of the top 5 sets of the data available isused. There
arewdl over 30 bituminous- and subbituminous-fired units in the eectric utility industry (1999),
respectively. Thus, the bituminous (33 x 0.12 = 3.72 or 4 sets) and the subbituminous (31 x 0.12 =
3.84 or 4 sets) subcategories are based on 4 sets of 3 data points each. There are only 29 lignite-fired
unitsin the dectric utility industry (1999), therefore, the lignite subcategory isbased on 5 sets of 3 data
points (except Leland Olds with 2 data points, 14 data points totdl).



Table2. Resulting potential MACT floor levelsfor all data that incorporate variability at
various confidence limits (Ib/TBtu) *

Mean of the best 12% 90% limit 95% limit 99% limit I

0.175 0.232 0.251 0.292

* Based on 238 data points.

When the top 12 percent of the unitsin MACT floor analysis are identified (by subcategory),
the average of the best 12 percent of the unitsisthe first estimate of the MACT floor. In Table 4, the
average mercury emission rates for bituminous-, subbituminous-, and lignite-fired (without FBCs) are
0.145, 1.048, 6.403 Ib Hg/TBtu, respectively.

The estimates of the upper limits for the average value of performance for the top best
performing units (upper 12 percent or equivaent of appropriate tests) in scenarios 2 and 3 are shown in
Table5 and 6. Because of the combined measurement and operationa uncertainty in the averages of
the emission factors, these upper limits range from about 12 percent to 146 percent greater than their
average values, depending on the confidence limit and scenario.

The details of the associated caculations are presented in the attachment to this technical
memorandum and the results for Scenario 1 are presented in Table A-5 of that attachment. This
methodology is described as Concept A, Approach 2, and Modd 2. Scenarios 2 and 3 are also based
on the same methodology (equations) but were calculated by spreadsheet.

Possible Future Actions

If the EPA dectsto provide emission-averaging procedures, satistical techniques may be used
to further adjust the upper vaues of 90 percent, 95 percent, and 99 percent confidence limits on the
digtribution of the best 12 percent of unitsto reflect the effect of emisson averaging on the upper
values. Other gpproaches to establish MACT floors may include technical analyses of emissons
reduction performance based on e ements such as feed composition, operationa characteristics of
single or combined control systems, combustion effects, and data transformation.



Table3. Mercury Test Unit Emission Meansof Top Performing Plantsfor Subcategorization
by Coal Type, Including FBC

Rank Test unit Air pollution control(s) ICR Plant mercury emissions
and/or furnace type means (Ib/TBtu, based on F-factor)
Bituminous-fired Units
1 Mecklenburg SDA/FF 0.1062
| Dumye coteane sonrr
Valmont FF 0.1268
4 Stockton FBC/FF 0.1316
Average 0.118
Subbituminous-fired Units
1 AES Hawaii FBC/FF 0.4606
2 Clay Boswell 2 FF 0.6633
3 Craig 3 SDA/FF 0.7248
4 Cholla 3 ESP-HS 1.2066
Average 0.764
Lignite-fired Units
1 R.M. Heskett FBC/ESP-CS 3.9768
2 Antelope Valley SDA/FF 4.0042
3 Leland Olds ESP-CS 4.0233
4 Stanton Station 10 SDA/FF 6.2517
5 Stanton Station 1 ESP-CS 6.9024
Average 5.032

FF = Baghouse (fabric filter)

SDA = Dry lime/spray dryer adsorber

FGD = A flue gas desulfurization wet scrubber (lime or limestone)

ESP-CS = Electrostatic precipitator (cold-side, meaning this ESP isinstalled at alocation downstream of the air
preheater)

ESP-HS = Electrostatic precipitator (hot-side, meaning this ESP isinstalled at alocation upstream of the air preheater)




Table4. Mercury Test Unit Emisson Meansof Top Performing Plantsfor Subcategorization
by Coal Type, Excluding FBC

Rank Test unit Air pollution control(s) and/or ICR Plant mercury emissions
furnace type Ib/TBtu, based on F-factor
Bituminous-fired Units
1 Mecklenburg SDA/FF 0.1062
2 | Cogeneration Faciiy SDAIFF 01074
Valmont FF 0.1268
4 SEI-Birchwood SDA/FF 0.2379
Average 0.145
Subbituminous-fired Units
1 Clay Boswell 2 FF 0.6633
2 Craig 3 SDA/FF 0.7248
3 Cholla 3 ESP-HS 1.2066
4 Craig 1 ESP-HS/FGD 1.5955
Average 1.048
Lignite-fired Units
1 Antelope Valley SDA/FF 4.0042
2 Leland Olds ESP-CS 4.0233
3 Stanton Station 10 SDA/FF 6.2517
4 Stanton Station 1 ESP-CS 6.9024
5 Lewis & Clark Particulate Scrubber (not FGD, no 10.8315
lime or limestone)
Average 6.403

FF = Baghouse (fabric filter)

SDA = Dry lime/spray dryer adsorber

FGD = A flue gas desulfurization wet scrubber (lime or limestone)

ESP-CS = Electrostatic precipitator (cold-side, meaning this ESP isinstalled at alocation downstream of the air
preheater)

ESP-HS = Electrostatic precipitator (hot-side, meaning this ESP isinstalled at alocation upstream of the air preheater)



Table5. Resulting potential MACT floor levels by fuel that incor porate variability at various
confidence limitsw/FBC (Ib/T Btu)

* Based on 4 sets of 3 data points.

** Based on 5 sets of 3 data points (except Leland Olds with 2 data points, 14 data points total).

Fuel Mean of the best 12% 90% limit 95% limit 99% limit
Bituminous * 0.118 0.132 0.138 0.157
Subbituminous * 0.764 1.102 1.250 1.703
Lignite ** 5.032 6.379 6.905 8.324

Table6. Resulting potential MACT floor levels by fuel that incor porate variability at various
confidence limitsw/o FBC (Ib/TBtu)

* Based on 4 sets of 3 data points.

** Based on 5 sets of 3 data points (except Leland Olds with 2 data points, 14 data points total).
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Fuel Mean of the best 12% 90% limit 95% limit 99% limit
Bituminous * 0.145 0.221 0.255 0.357
Subbituminous * 1.048 1.459 1.638 2.188
Lignite ** 6.403 8.528 9.358 11.597




ATTACHMENT: Accounting for Variability in MACT-based Limits

C. Andrew Clayton, RTI
G. Gordon Brown, RTI

OBJECTIVE AND OVERVIEW

The objective of the work described in this document is to develop statistically-based threshold
vauesthat can serve as MACT-based limits. Severd datistica gpproaches are consdered and
compared. In addition, three potentia concepts for defining limits are considered. These three
concepts relate to aternative ways of accounting for uncertainty:

Concept A:  Define alimit as the mean emission of the top 12 percent of the units plus a term that
accounts for the uncertainty in the estimate of that mean.

Concept B:  Definethelimit asin A, but aso add a component that accounts for the variation in a
three-run mean for a (hypothetical) unit that is operating at the mean of the top 12
percent.

Concept C.  Define the limit as an upper percentile of the didtribution of units within the top 12
percent.

Concept A isthe most consarvative in that it will produce the smdlest limits while Concept C isthe
least conservative and will produce the largest limits.

The statistical approaches considered are asfollows:

Approach 1:  Using only the emissions data for the units within the top 12 percent, estimate variance
components for between-unit and within-unit sources of variation. Use these estimates
to account for uncertainty, using each of the concepts above (A, B, and C). This
gpproach assumes that within-unit variation, for the top performing units, is congtant.
Limits are based on normality assumptions for both between-unit and within-unit
digributions.

Approach 2:  Uding dl emissions data, estimate a relationship between within-unit (i.e,, run-to-run)
variances and unit means. (We estimated parameters for three different models))
Apply thisrelationship to estimate within-unit variances for the top 12 percent of the
units and to derive the estimated variance component associated with between-unit
variaion. Use these variance estimates to account for uncertainty, using each of the
concepts above (A, B, and C). This gpproach assumes that within-unit variation
depends only on the performance leve of the unit and that the chosen mode adequately
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gpproximates the relationship between within-unit variance and the performance leve.
Limits are based on normality assumptions for both between-unit and within-unit
digtributions.

Approach 3:  Usng dl emissons data, estimate a rdationship between within-unit variances and unit
means, asfor Approach 2. Apply this rdationship to estimate within-unit variances for
the top 12 percent of the units; to account for uncertainty in each of these unit means,
add the estimated amount of within-unit variation to produce a series of unit-specific
limits. Sdlect an upper percentile of these limits asthe overdl limit. Thisapproachis
appropriate for Concept C. It relies on normality of the within-unit distribution, but
makes no assumption about the form of the between-unit distribution.

In this document, the approaches are gpplied to the top performing units without regard to unit
subcategorizations, however, the gpproaches could aso be gpplied to subcategories of units.

DATA

The data conssted of stack emission factor measurements (Ib Hg/TBtu of fud burnt, calculated
viathe F-factor method) from 80 units. In generd, three replicate runs were performed at each unit.
For 3 of the units, only 2 of the runs yielded usable data; hence, there were 237 runs overdl. Thetop-
performing 12 percent of the units conssted of those 10 units with the smallest means. The means and
the observed within-unit variances for these units are listed in Table A-1. Figure A-1 shows aplot of
the within-unit variances versus the unit meansfor dl 80 units.

It should be noted that the within-unit variances represent measurement errors and short-term
vaiation in aunit’s performance, since this component is based on run-to-run variation within a unit.
On the other hand, a between-unit variance component, among some group of units, encompasses both
unit differences and longer-term tempora variability resulting from tempora variation in feed stock,
operating conditions, etc. within aunit. This occurs because each unit is observed only over ashort
period of time and, thus, these effects cannot be separated from one another.

DETAILSOF STATISTICAL APPROACHES
Notation

M = the number of units

m = the number of top-performing units

n = the number of measurements for the i unit

n = the total number of measurements among the top-performing units

X;; = the j"™run measurement of the emission factor at the i unit (j=1,2,3)
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)_(i = mean for unit i

Table A-1. Meansand Within-Unit Variancesfor Top Performing Units

Rank Unit Unit mean Observed within-unit variance
1 Kline 0.08164 0.000007
2 Scrubgrass 0.09360 0.000125
3 Mecklenburg 0.10619 0.000263
4 Collier 0.10742 0.000110
5 Valmont 0.12683 0.001968
6 Stockton 0.13165 0.000100
7 SEI 0.23791 0.022967
8 Intermountain 0.24664 0.009698
9 Logan 0.28015 0.075198
10 Salem 0.33482 0.025756

X = overal mean of top performing units
s = the within-unit sandard deviation for unit i.

Approach 1.

One gpproach to the problem is the following. It uses only the data for the top performing
units; it assumes that the within-unit variability among these unitsis the same. The steps are outlined
below.

Step 1. For the top-performing units, compute the unit means, )_(i ,theoverall mean, X, and s, the
within-unit standard deviations.

Step 2. Perform an analysis of variance (ANOVA) to determine estimates of the between-unit
component of variance, S ﬁ,, and the within-unit component of variance, S \i, The ANOVA tableis
asfollows.
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Sour ce of Degrees Expected values
e of Sum of squares Mean squares
variation of mean squares
freedom
_g Y )2
Beweenunits | m-1 Pes=a mi-X)" | pvs=pPss/(m- 1) | s2+Ks?
m 2
. Wss=4 (-1 WMS=WSS/(n- m)| Sw
Within units m-n = ( )
Om On —
Total n-1 TSS=a a (X, - X)*
i=1 j=1

Intheabove, K= 3 [/n)- @/ n]/(m 1) . Kwill havetheveue3if dl units have 3
i=1

replicate measurements. The variance components are estimated as

Q) S5 =WMS
2 $2=(PMS- $2)/K=[(TSS- (n- MWMS) /(m- 1) - WM / K

Step 3. Determine V, the estimated variance of 3-run means as
(3) V=82+82/3=(TSS- (n- MWMS/(m- 1)+ WMS/3

It should be noted that V=(1/3)PMS if K=3, and that there are d=m-1 degrees of freedom associated
with V. (Inthiscaseit is not actudly necessary to partition the V into components; it can be caculated
directly from the variance of the unit means) If K isdifferent from 3, then the degrees of freedom can
be approximated by Satterthwaite’ s formula.

Step 4A. For concept A, determine an upper 100" percent confidence limit (e.g., for '=0.95, a 95
percent confidence limit) for the overall mean of top performing unitsasL, = X+ t,, vV / m, where

ty. isthe 100" percent percentage point of thet distribution with d degrees of freedom. UseL, asthe
MACT limit (Concept A).

Step 4B. For concept B, determine an upper 100" percent confidence limit for a 3-run average for a
unit performing a the overall mean of the top performing unitsas L, = X +t, ,4/(V/m)+ (82 /3) , where

t;.. isthe 100" percent percentage point of thet distribution with f degrees of freedom. Determine the
degrees of freedom, f, viathe formula
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_[v/im+ (sa/3)]°
B (V/m)2+(§v2v/3)2'
m- 1 n-m

f

Use Ly asthe MACT limit (Concept B).

Step 4C. For Concept C, determine an upper 100" percent confidence limit for 3-run means
as L, = X+t,, W . Usel; asthe MACT limit (Concept C).

Approach 2.

As noted above, Approach 1 assumes there is acommon within-unit variance, S 3\, The data
for the top 10 performers have observed variances ranging from 0.000007 to 0.075198, suggesting
that it isunlikely that such an assumptionisvaid. A plot of the szversusthe unit means (for dl units)

aso reved s that within-unit variances tend to increase with increasing leve of unit emissions (see Figure
A-1). Hence an dternative gpproach isto modd the within-unit variances (or stlandard deviations) as a
function of the 3-run unit means and to use those modeled variances to derive threshold limits Smilar to
the L values above (Step 4). This approach is expected to work well if the modeling can be applied to
areasonably large data set that covers afarly large range of variation.

The steps are as follows:

Step 1. Sdect aclass of modelsreating s to the unit means, and estimate the parameters of the modd!.
(We used severd models and applied them to dl the data and to severa subsets of the data; the models
and results are presented below.). Let §x] denote the estimated standard deviation when the level of
the unit mean isx.

Step 2. Cdculate the estimated within-unit mean square (for the top-performing units) based on the
mode as

4  WMS=3 (n- DEXD*/(n- m

i=1

Step 3. Cdculate estimates of the within-unit and between-unit variance components by substituting the
model-based WM S vaue for the WM S used in equations (1) and (2).

Step 4. Cdculate
® V=sg+(dX])*/3.
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Step 5A. For Concept A, determine an upper 100" percent confidence limit for the overadl mean of
top performing unitsas L, = X +t,, WV I'm ,whereV isfrom equation (5) and t, . is the 100"

percent percentage point of the t distribution with d degrees of freedom. Use L, asthe MACT limit
(Concept A).

Step 5B. For concept B, determine an upper 100" percent confidence limit for a3-run average for a
unit performing & the overadl mean of the top performing units as

Lg = X +ty (VI m)+ ({X])? /3 ,

where V isfrom equation (5) and t;.. isthe 100" percent percentage point of thet distribution with f
degrees of freedom. Determine the degrees of freedom, f, viathe formula

_IvV/im+ (dXD° /31
Vv /m? R (EXD*/3°
m- 1 M- g

f

where M isthe total number of units (i.e,, the number of units used in the modeling of the variance-
versus-mean relationship) and q is the number of model parameters that were estimated. Use Lg asthe
MACT limit (Concept B).

For Concept C, perform the following additiona steps.

Step 5C. Calculate an upper 95" percentile of the between-unit distribution as

(1) UO.95 = >_( + ZO.95§ P

where Z, o5 denotes the 95" percentage point of a standard normal distribution. (Note: Other
percentage points could be chosen; however, more extreme [i.e., higher] percentage points do not

seem warranted when missmall.)

Step 6C. Determine V, the estimated variance of 3-run means &t that point of the between-unit
digribution as:

(@  V=8Z+ ([ Uy /3

Step 7C. Caculate an upper 100" percent confidence limit for 3-run meansas L (asin Step 4C of
Approach 1) using the V from equation (7): L. = X +t,, WV . UseL asthe MACT limit (Concept
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C). The appropriate degrees of freedom to associate with V is debatable. We have chosen to be
conservative and have used d=m-1 as the degrees of freedom, aswas done in Approach 1.

Approach 3.

Approach 3 makes use of the same dtrategy of modeling the within-unit variances as was done
for Approach 2. It usesthe results of the modeling in adifferent way, however. As noted above, the
resultant limit from this gpproach is compatible only with Concept C.

Step 1. Use the same modeling approach as described in Step 1 of Approach 2.

Step 2. Determine the upper 100" percentile for a 3-run average for each of the top-performing
units, using the mode -based estimate of variance:

€) U =)_<i+Z;lS[)_<i]/\/§

where Z. is the upper 100" percentile of the standard normal distribution. A normal-distribution
critical vaueis used, rather than avaue from at distribution, Snce the number of within-run variances
that are modeled is assumed to be large.

Step 3. Choose an upper percentile of the distribution of these U vaues (or the maximum U, if the
number of the top performersis amdl) asthe MACT limit L.

RESULTS

Approach 1.

Step 1. The overal mean for the 10 top performing unitsis 0.17468 1b/Trillion Btu. Table A-1 shows
the estimated unit means and variances.

Step 2. The ANOVA tableisasfollows:

Source of variation | Degrees of freedom Sum of squares M ean squar es
Between units 9 0.22359 0.02484
Within units 20 0.27238 0.01362
Tota 29 0.49597
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Estimates of the within- and between-unit variance components are thus 0.01362 and 0.00374,
respectively (from equations (1) and (2)).

Step 3. The estimate of V is0.00828. Its square root is 0.091. (As noted above, for this data set, V
could be caculated directly from the variance of the unit means, snce dl of the top performing units

have 3 runs.)

Step 4. Thelimits for three different confidence levels for each of the concepts are presented in Table

A-2 below.

Table A-2. Limits Based on Approach 1

Conopt | imit | Pegremsol |2 imE e
=0.90 =0.95 =0.99
A La 9 0.214 0.227 0.256
Lg 26 0.271 0.300 0.356
C Lg 9 0.301 0.341 0.431
Approach 2.

Step 1. Three different mode s were used to relate the within-unit variances and means.

Modd 1. s» a+ bx

Modd 2 s» «/a+ bxP
Modd 3: S» «/bxP

Note that the parameters have different meanings in the different models. These moddls were fit on the
log scde (eg., for Mode 1, the log of swas modeed as afunction of log(at+bx)) using non-linear least
squares (SAS PROC NLIN). Thelog scale was used since standard deviations tend to have a
variance that increases with their magnitude. Each of these models was applied to 4 data sets. the top
10 performing units (top 12 percent), the top 40 performing units (top 50 percent), al 80 units, dl units
except for one (Colstrip) which appeared to be an outlier. Results are summarized in Table A-3. The
left hand part of the table shows the modding results — namely, the estimated parameters, their
gpproximate standard errors, 95 percent confidence interval estimates, the correlation matrix of the
parameter estimates, and the mean square error (MSE) from the model. For each data set, the most
general modd, Modd 2, appeared to perform best. The parameters are poorly estimated if only the
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top 10 performers are used. The results for the other three data sets are very similar. Thisis
demonstrated by the results presented in the rightmost columns of Table A-3, which are described
below:

. the estimated WM S values (Step 2, equation (4)),

. the estimated between-unit variance component (Step 3)

. the estimated value of the 95" percentile of the between-unit distribution of the top performing
units (Step 5C, equation (6)), and

. the estimated limit L associated with Concept C (Step 7C).

Except for the cases where the variance estimation was based on only the top 10 performers, the limits
appear to be insengitive to both model specification and to the particular data set used.

The remaining steps of Approach 2 were carried out for each of the mode forms but only the
model estimation results from the “dl data’ case are included. The predicted within-unit variances for
the top performing units are shown in Table A-4. The resulting limits are presented in Table A-5, by
Concept and model form.

Approach 3.

Table A-6 illustrates Approach 3. 1t shows the estimated unit-specific U vaues, as defined in
equation (8), using '=0.95 and the estimated within-unit variances (see Table A-4). These are given
for the three modd forms, as gpplied to the 80-unit data set. The maximum vaues (last row of Table
A-6) correspond approximately to the 95 percent percentile of the distribution of the Us; these values
(approximatdy 0.38 to 0.40) are somewhat smaler than the 95 percent limits derived for L via
Approach 2 (~0.43, see Table A-5). Thisisfor two reasons. First and probably foremost isthe fact
that a conservative number of degrees of freedom was used in Approach 2 (t=1.833) as compared to
the Z value used in Approach 3 (Z=1.645). Second, for Approach 3, the maximum U does not
necessarily correspond exactly to the 951 percentile of the distribution of top performing units
(depending on how one defines such a percentile) while Approach 2 produces an estimated limit for
the 95" percentile of the distribution under the assumption of approximate normality. Both Approaches
2 and 3 yidd limits greater than the corresponding L limit from Approach 1 (equa to 0.341), which
assumed congtant within-unit variances. The reason for thisis that the model-based within-unit
variances are smaler than the ANOV A-based estimate of Approach 1. Thisyields a higher between-
unit component of variance for Approach 2 than for Approach 1. The limitsfor Approach C for the
other " values are provided in Table A-7.
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Table A-3. Summary of Resultsfor Approach 2, for Three Models Applied to Four Data Sets

Data sst Model Parm Estimate Approx Lower 95 Upper 95 Corr Corr MSE SA 2 $2 Uges (JUqes))? Lc
SE. percent percent with b with p W P
Limit Limit
Top 12 1 a -0.0475 0.0112 -0.0734 -0.0216 -0.993 0.341 0.0063 0.0116 0.3518 0.07769 0.5297
percent 5 0 0
b 0.6114 0.1328 0.3051 0.9178
2 a -0.00007 0.000061 -0.00021 0.000078 0.748 0.878 0.299 0.0115 0.0059 0.3016 0.03732 0.4233
9 5 6
b 11.1683 17.9833 -31.3557 53.6924 0.973
p 4.7555 0.9109 2.6015 6.9094
3 b 39.5130 58.3655 -95.0793 174.1 0.968 0.345 0.0140 0.0032 0.2683 0.01354 0.3612
8 9 4
p 5.6384 0.7668 3.8701 7.4067
Top 50 1 a 0.00454 0.00769 -0.0110 0.0201 - 0.982 0.0008 0.0175 0.3923 0.00741 0.4338
percent 0.548 3 0 1
b 0.1242 0.0249 0.0738 0.1745
2 a -0.00156 0.00136 -0.00431 0.00119 - 0. 0.772 0.0021 0.0160 0.3832 0.00718 0.4238
0.579 946 5 4 7
b 0.0254 0.00747 0.0103 0.0405 -
0.283
p 1.1128 0.2946 0.5159 1.7098
3 b 0.0178 0.00543 0.00684 0.0288 0.014 0.926 0.0012 0.0170 0.3896 0.00734 0.4308
7 1 5
p 1.6076 0.2472 1.1073 2.1080
All 1 a 0.0126 0.00843 -0.00415 0.0294 - 0.977 0.0009 0.0173 0.3915 0.00559 0.4290
0.396 1 2 8
b 0.0952 0.0125 0.0703 0.1201
2 a -0.00066 0.000440 -0.00153 0.000220 - 0.946 0.895 0.0014 0.0168 0.3879 0.00551 0.4250
0.878 2 5 0
b 0.0239 0.00693 0.0101 0.0377 -
0.678
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Data set Model Parm Estimate Approx Lower 95 Upper 95 Corr Corr MSE SA 2 $2 Uoes (JUpes])? Lc
S.E. percent percent with b with p W P
Limit Limit
p 1.4302 0.1719 1.0880 1.7724
3 b 0.0166 0.00444 0.00773 0.0254 - 0.944 0.0010 0.0172 0.3907 0.00558 0.4280
0.585 0 5 4
p 1.6496 0.1538 1.3435 1.9557
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Table A-3. Summary of Resultsfor Approach 2, for Three Models Applied to Four Data Sets (Cont’d)

Data st Model Parm Estimate Approx Lower 95 Upper 95 Corr Corr MSE SA 2 § 2 Uges (JUpes])? Lc
S.E. percent percent with b with p w P
Limit Limit
All but 1 a 0.0137 0.00848 -0.00320 0.0306 - 0.946 0.0009 0.0173 0.3914 0.00552 42863
one 0.398 5 5 5
b 0.0920 0.0121 0.0679 0.1160
2 a -0.00067 0.000442 -0.00155 0.000209 - 0.946 0.861 0.0014 0.0168 0.3880 0.00545 42488
0.877 4 5 1
b 0.0233 0.00664 0.0101 0.0365 -0.675
p 1.4116 0.1692 1.0747 1.7485
3 b 0.0161 0.00424 0.00764 0.0245 - 0.911 0.0010 0.0172 0.3907 0.00551 0.4279
0.580 7 5 5
p 1.6326 0.1514 1.3312 1.9340
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Table A-4. Observed and Model-Based Within-Unit Variances, for Three Models Applied to
All Data

. Unit Qbs_erveq Moqel 1 Modgl 2 Mod_el 3

Rank Unit mean W|th?n-un|t pre(_jlcted predlcted preqllcted

variance variance variance variance
1 Kline 0.08164 0.000007 .000416329 .000006628 .000265663
2 Scrubgrass 0.09360 0.000125 .000464095 .000150047 .000332867
3 Mecklenburg 0.10619 0.000263 .000517166 .000309742 .000409882
4 Collier 0.10742 0.000110 .000522506 .000325806 .000417743
5 Valmont 0.12683 0.001968 .000610424 .000589536 .000549449
6 Stockton 0.13165 0.000100 .000633312 .000657867 .000584317
7 SEI 0.23791 0.022967 .001244885 .002408714 .001550881
8 Intermountain 0.24664 0.009698 .001304231 .002570895 .001645871
9 Logan 0.28015 0.075198 .001544834 .003216053 .002030739
10 Salem 0.33482 0.025756 .001981107 .004341002 .002725007

Table A-5. Limits Based on Approach 2

Model for Confidence level
Concept Limit relgtlng fDeg(‘rjees ]?f
variance reedom for t = —0.90 “_0095 = -0.99
and mean *
A La 1 9 0.233 0.252 0.293
2 9 0.232 0.251 0.292
3 9 0.233 0.251 0.293
B Lg 1 12 0.236 0.255 0.296
2 14 0.235 0.254 0.293
3 12 0.236 0.256 0.297
C Lc 1 9 0.367 0.429 0.566
2 9 0.363 0.425 0.560
3 9 0.366 0.428 0.565

* Model 1: S» a+ bx

Model 2: S» +/a+ bxP
Model 3: S» 4/lox®

The results are based on model parameter estimates from the full data set of 80 units.



Table A-6. Model-Based Upper 95 Percent Limits, for Three Models Applied to All Data

Table A-7. Limits Based on Approach 3*

Confidence Level

Unit Observed Model 1 predicted Model 2 predicted Model 3 predicted
Rank Unit mean within-unit upper 95 per cent upper 95 percent upper 95 per cent
variance limit limit limit
1 Kline 0.000007 0.10102 0.08409 0.09712
0.0816
4
2 Scrubgrass 0.000125 0.11406 0.10523 0.11093
0.0936
0
3 Mecklenburg 0.000263 0.12778 0.12290 0.12541
0.1061
9
4 Collier 0.000110 0.12913 0.12456 0.12683
0.1074
2
5 Vamont 0.001968 0.15030 0.14989 0.14909
0.1268
3
6 Stockton 0.000100 0.15555 0.15601 0.15461
0.1316
5
7 SEI 0.022967 0.27142 0.28452 0.27531
0.2379
1
8 Intermountai 0.009698 0.28094 0.29480 0.28517
n 0.2466
4
9 Logan 0.075198 0.31748 0.33401 0.32295
0.2801
5
10 Sdem 0.025756 0.37709 0.39739 0.38439
0.3348
2
|

Model
" =0.90 " =0.95 " =0.99
1 0.368 0.378 0.396
2 0.384 0.398 0.425
3 0.374 0.385 0.406
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* Limits are compatible with Concept C and are taken as the worst-case U, (Salem) among the top
performing units (since there were 10 such units).
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Figure A-1. Plot of Within-Unit Variances Versus Unit Means
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